
Developing a standalone application in Unity

YRGO, Industrial Technical Artist

Caroline Wallbäck

Gothenburg, Sweden

Spring 2022



Preface

I want to start by giving my thanks to Volvo Cars Gothenburg for giving me this opportunity

to deepdive into coding in C#. Especially thanks to Kristoffer Helander, Technical Artist at

Technical Visualisation Department at Volvo Cars, and my mentor, during this period, for

helping through confusing times amongst all the ups and downs.

I also could not have done this without my classmate, and also a colleague at Volvo Cars,

who also had the internship together with me, Sofia Friberg.

Table of Content

Introduction 3

- Purpose 3

- Background 3

- Questions and Limitations 4

Implementation 5

Result 7

- The final product 7

- Future Vision 8

- Evaluation and Summary 8

Bibliography 10

2



Introduction

Volvo Cars has an online-experience of viewing a car on their website. Any customer can

overview a car in 3D-space, navigate in and around it, exploring it from specific angles,

both exterior and interior. Currently this experience has only been made for one car

model, involving lots of different people with different expertises. Developers for coding

in Unity, and designers for deciding how the end result should look like. Now there has

been a request for making this experience for several other car models, and Volvo is

looking for a more time-efficient and easy way of designing these experiences, and

without having to involve as many people from different departments.

Purpose
Our aim is to create an easy understandable and user friendly application, for in-house designers to

use when designing the experience of viewing a car online on Volvo Cars website. The end goal for

the user of this application is to create cameras in and around the car at specific spots and angles,

and implement specific settings for what it will show and how it will behave. All this data needs to be

exported into a Json-file which is used when the experience is implemented on the website. The

purpose with the standalone application is that it can be used without any developing skills, so there

won’t be any need for developers in making the final experience setup.

Background
Originally this is made directly in Unity, placing all necessary objects in the scene and creating all

functionality using code. This makes it complicated. The ones in design and marketing deciding what

the user experience should look like don’t have the right knowledge of Unity. But developers with

the knowledge don't know what the experience should look like. The idea of making a separate

software for this purpose has been up for a while at Volvo Cars but not yet done. A lot of code for

functionality, like different camera-behaviours and settings, animations and more, is already done

from making the original experience in Unity. We need to implement them in the application and

make sure the user can create new objects, edit values and settings during runtime.

3



Questions and Limitations

‘How can we develop a new separate software with this already existing workflow from

Unity, making it accessible and understandable for anyone at Volvo Cars to use?’

The first and biggest struggle for this project is that neither me, nor my team associate, had ever

used Unity before and had very little coding experience, both in general but also specifically coding

for Unity. Therefore our first question was of course ‘Will we be able to get something real and

professionally done that is valuable in the end?’.

Then there have been a lot of questions and discussions, both from start but also throughout the

project, around who will be the user for this software. We would want to get the perfect balance

between rather complicated functionalities but also with an easy understandable user experience.

The ultimate product would work differently depending on if the user knows the basics in Unity or

similar softwares, and recognises for example navigation, functionalities and specific terms.

We had some doubts about how extensive this software can and/or should be. Which of all features

do we need to include? The car would still need prepping in Unity with collision, materials,

animations etc before it goes into this new application. What more will be needed to do in Unity and

which features can we implement in the application?

While at it, can we make this software completely as a standalone application so Unity isn’t needed

at all?

One problem we discovered when we started implementing more complicated functionalities

caused limitations throughout the project. All already existing code for the original experience in

Unity is designed and written with the requirement of placing everything in the scene and making all

important connections in the Unity Editor before starting playmode. We needed to make sure that

everything works even when you start the application with an empty scene and place all objects

during runtime instead. This has been a challenge, since we had to rewrite existing and fairly

important code and didn't always know what we could change in order for the existing functionality

to still work, since it was someone else's code.

4



Implementation

Our first weeks at Volvo Cars we focused on exploring Unity, watching tutorials and reading

documentation to get to know Unity and also coding in C# with Visual Studio Code. We studied the

original project and read existing code to get an understanding of how it’s built and works.

Before we started with the application, we did a simple user journey of the upcoming application, to

get an idea of what it would look like and what to start with, and then presented it to our mentors to

compare with their idea of this application to see if we had understood the assignment fairly

correctly.

When starting with the project we began with a simple GUI with Unity UI Builder, since the whole

project depends on the user interface. We implemented basic features such as moving around in the

scene, creating cameras (placing objects in the scene containing the existing camera-scripts),

deleting cameras, editing name and position with user input. We put a lot of focus on functionality

for exporting the data to a Json-file since it’s the end-goal when using this application. The Json-file

needs to contain all relevant data to be able to get the experience up on the website. We also

needed support for importing the data back to the application, so the user can save and import data

to continue another day.

After a few weeks, we had a functioning application with the most basic features; placing the

cameras at the desired position, displaying a list of all cameras in the scene, and exporting the data.

Next step was to do a need analysis from the end-users perspective to be able to plan which

features we needed and which were more prioritised. We did this together with two colleagues, one

technical artist and one visualisation artist, to get a good balance between the requests from a

designer and the more technical aspect of what is possible and not. From this, we put up a tasklog

and planned a few weeks ahead at a time. We began with the most important features to get a

complete application with all required components, then continued with the prioritised tasks that

were not necessary for a working application but good-to-have-features.

We made the functionality of hovering over objects and clicking on them, and the functionality of

editing the transform of the objects in the GUI, but we wanted a more intuitive way of editing the

transform. What we wanted was classic transform handles which you have in pretty much any 3D

programme. We tried coming up with different ways of doing them but we ended up downloading a

finished version with 3D-models and scripts, since it was way easier and more time-efficient. We just

adjusted some small stuff to make it work with our application. It was the same with the scene gizmo

that shows the X-, Y- and Z-axis of the world.

5



Since this application will be used for several different car models the idea from start was to make a

new build of the application for each car, with the car already in the scene. We managed to make a

solution for importing any car directly in the application, with asset bundles in Unity, so there is no

need to ever rebuild the application. We also made a solution for making the animations of car parts

in the application so it wouldn’t be needed in the preparation of the car model in Unity.

When we had a lot of implemented functionality, such as placing all necessary objects (cameras,

points of interest, zones, connection groups) and displaying them in separate lists, moving around in

the scene, editing all settings, switching between edit mode and preview mode, exporting and

importing data, we did some user tests with our colleagues (in Technical and Design Visualisation) to

get useful information about the GUI and if they could understand and use the application

intuitively.

We evaluated all feedback and decided what was more prioritised to implement, then adjusted and

added some functionality, for example we changed the GUI a bit to get it more intuitive to work with

and added tooltips.

Before we handed over the final product we went through all the code. We made sure there wasn’t

any unused code and commented on the code so the next person that will pick up this project, or if

something needs adjustments, easily will understand what the code does. We also made

documentation of everything which contains how asset bundles work that we used for importing the

car, how the application works, and information about all the settings..

6



Result

The final product
The final product is a complete standalone application. The user can import a 3D car model, move

around freely in the scene, placing multiple cameras and specific points of interest-icons in and

around the car with the functionality of switching cameras when clicking on these points of interest.

Edit all settings of the cameras, such as orientation, boundaries for how far you can rotate the

camera in each direction, how far or close you can zoom and how the camera will behave in

different situations. Setting up different zones in the scene. Creating connection groups for setting

all functionality of which camera the end-user has to be in, and in which zone, to view the different

points of interest. The user can export and import data. These are the necessary features.

The application also has some extra features such as adding informational text fields and animations

of different car parts to points of interest, a searchfield, a mouse-hovering function that highlights

selectable items in the scene, transform handles that appears when selecting (clicking on) any

object, for easy adjustability of position, rotation and scale. A scene gizmo that shows X-, Y-, Z-axis of

the scene. Support for not only exporting all data, but also the possibility to export only chosen

categories of objects, or manually selecting each desired object the user wishes to export.

We also made tooltips since there are a lot of settings that can be hard to understand when using

the application without experience, and we also implemented a lot of hotkeys.

The application has a preview mode, which is not what in the end goes up on the website since it’s

only the data that will be exported, but it is a preview only for the user to get a feel of what the

web-result will look like.

7



Future Visions
The biggest vision with this application is to make it as independent from Unity as possible. Now the

3D model of the car still needs some prepping in Unity, to even be able to import the model into the

application. To get around this would be major work and not on the agenda before even knowing if

the application is better than the previous workflow in Unity, and if it is worth it depending on how

often the application will be used.

Some other requests we’ve had however, that would be something to follow up on, is to be able to

import only a selection of chosen objects from a previously exported Json-file, import different

environments, import new icons for points of interest and different files for saving and exporting.

One file for saving data to continue working on and another for exporting the final data, since we

today export all data into one file, but not all data is necessary when delivering the file for the

website, but is necessary for importing everything correctly back into the application.

Evaluation and Summary
This project has had a lot of ups and downs, since as mentioned we didn’t have any experience of

coding in C# or working in Unity. The one person at the company that had most knowledge of the

original project in Unity, and had written a lot of its code, quit at the company a few weeks after we

started. A lot of our struggles would have been solved faster if we had anyone to ask about the

scripts or functionality that were necessary to implement in our application, but hard to understand.

Instead we had to debug, test, search online for similar code and try to understand it by ourselves,

and we managed to overcome all obstacles.

The first period we worked a lot together, but as our knowledge grew and we got more comfortable

and confident about coding, we did more by ourselves. We worked great as a team, followed our

planning, and got more done in the end than we thought, and therefore made the application more

extensive than the original thought.

One thing that we had a question about during this whole project; who will be the user of this

application, was never answered since no one really knew. The tech visualisation team got a request

of doing this experience once, and did it directly in Unity, but when they got requests of doing it for

multiple more car models they wanted to make a solution so the ones that came with the request

8



could do it by themselves without having to include the tech team. The application itself was never

requested by the ones that will use it.

I collected tons of new knowledges during this projects, mostly coding in C# and working in Unity,

including using Unity UI Builder and Shader Graph, but also working through a whole project of

developing a new software. Planning, doing a user journey, making a persona, need analysis,

working with Git in Sourcetree, working in a team with weekly sprints, testing code, doing user tests

and then evaluating important feedback and applying it to the application.

9



Bibliography

Unity Documentation - https://docs.unity3d.com/ScriptReference/

Unity Forum - https://forum.unity.com/

Volvo Code Library

Tutorials and Inspiration from Youtube:

https://www.youtube.com/c/CodeWithMat

https://www.youtube.com/c/CodeMonkeyUnity

Downloads from Github:

https://github.com/pshtif/RuntimeTransformHandle

https://github.com/yasirkula/UnityRuntimeSceneGizmo

10

https://docs.unity3d.com/ScriptReference/
https://forum.unity.com/
https://www.youtube.com/c/CodeWithMat
https://www.youtube.com/c/CodeMonkeyUnity
https://github.com/pshtif/RuntimeTransformHandle
https://github.com/yasirkula/UnityRuntimeSceneGizmo

